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Abstract

This review is focused on image quality model building,
particularly in the context of the Image Quality Circle. There
are two fundamentally different ways to modeling image
quality; the impairment approach and the quality approach.
Impairment looks at decreases in image quality from some
reference or ideal. The quality approach attempts to model
the judgment of image quality directly, independent of the
reference. The more successful models are called perceptual
models, and have perceptual attributes, the ness, as the
dependent variables. Generalized weighted mean, or
Minkowski metrics, are the most successful mathematical
forms of image quality models. Several issues impeding
implementation of image quality models remain; appropriate
psychometric scaling of quality and nesses, and
identification of the nesses, particularly for image coding,
compression and processing applications. The Universal
Image Quality Model is not on the horizon.

INTRODUCTION

The idea of "the quality of the image" started with the
invention of the earliest optical instruments, the optical
telescope and microscope (1600-1620). (Galileo was a key
figure in both these inventions.) This concept appears again
in the early days of photography, 1860-1930, during the
development of television, 1935-1955, and continues with
digital imaging to the present day.

One might assume that with over four centuries of
experience with the concept of image quality that we would
be close to a complete understanding of the problem. One
reason why we are still far from a complete understanding of
image quality, and particularly Image Quality Models, is
because we lack a structure or a framework. To address this
deficiency a concept called the Image Quality Circle (IQC)
was proposed in 1989 at the IS&T Annual Meeting(1).

THE IMAGE QUALITY CIRCLE

The Image Quality Circle, (IQC) which is shown in Figure
1, is briefly described.

The goal of an imaging system designer is to relate the
Technology Variables of the imaging system or technology
to the Customer Quality Preference. Figure 1 shows this

fundamental objective via the arrow. The link between
customer quality preference and the imaging system and
materials technology variables is typically determined by
selecting a variable, printing images, and then asking
customers to judge the quality of the printed image. This
clearly works, but it is inefficient over time because a new
data collection effort is required every time a parameter is
changed. The IQC breaks the relationship between
Technology Variables and Customer Perceptions down into
a series of definable and measurable steps. The four
elements of the IQC approach are depicted in Figure 1 and
are described in counter-clockwise order around the Circle.
Customer quality preference. Customer image quality
preference is the overall image quality rating as judged by
customers. This is an interval scale of overall image quality
that can be defined numerically, say 0 to 100, or
adjectivally, such as "bad", "good", or "excellent".
Customer perceptions. The major customer perceptual
attributes of image quality are such dimensions as darkness,
sharpness, and graininess. These are called the "nesses" to
emphasize the perceptual, as opposed to the physical nature
of these attributes.

Figure1 Image Quality Circle
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Physical image parameters. Physical image parameters are
the quantitative functions and parameters we normally
ascribe to image quality, such as modulation transfer,
Wiener spectra,  density,  and color.
Technology variables. Technology variables are the
elements or parameters that the imaging system designer or
imaging system manufacturer manipulates to change the
image quality. Such variables include dots per inch
(resolution), toner size, and paper parameters, to name just a
few. For any given imaging technology, the list of
technology variables is quite extensive.

The four elements of the IQC are linked to one another
via models, or algorithms, which are depicted as ovals in
Figure 1.

Image quality models. Image quality models are
empirical (statistical) models that relate the customer
perceptions-such as darkness, sharpness, graininess and
raggedness, the nesses-to Customer Quality Preferences of
image quality. The model describes in mathematical terms
the tradeoff that the customer makes when judging image
quality. Image Quality Models, as defined here is the topic
of this paper.
Visual algorithms. The algorithm is the recipe that is used
to compute a value of a ness from a physical image
parameter. An example might be sharpness from the
physical measurement of the gradient of a printed edge.
System Models. System models are analytical models that
predict the physical image parameters from the technology
variables. One example might be the model for the
amplitude spectrum of a line boundary (the physical image
parameter from which raggedness is calculated) for a dot-
matrix printer, developed by knowing dot diameter and dot
spacing parameters.

Terms
In this discussion, we use the term image to mean a

colorant arranged in a manner to convey "information."
Colorant is used in its most general sense. It can be ink,
plastic (toner), wax, dye, silver, phosphors, etc. The image is
used to visually communicate information which can be in
the form of text, graphs, graphics, images, and art. The idea
of an image is very broad and need not be a "hard copy" on
a physical substrate. It can be a "soft copy" image on some
form of electronic display, or any other appropriate medium.

Quality is the integrated set of perceptions of the overall
degree of excellence of the image. The set of perceptions
can be defined or undefined. For example, in medical
imaging, the quality relates to the diagnostic capability of
the image, and there are specific protocols for making this
evaluation. In most other areas of imaging, image quality is
typically a "beauty contest".

The formalism that connects the nesses to the image
quality judgment is variously called image quality measures,
metrics, and models. It will help to clarify these terms.

MEASURES, METRICS AND MODELS

The three M's of measures, metrics, and models have a
long and confusing history as applied to image quality so
some clarifications are in order.
Image Quality Measure - is a signed scalar associated with a
vector indicating both its magnitude and sense but not its
orientation.
Image Quality Metric - posses a distance function that
satisfies the triangle inequality.
Image Quality Model - a fragment of a mathematical or
formal theory of (visual) perception that enables a prediction
of image quality from the perceptual attributes that comprise
the image quality. Image Quality Models have a specific
definition for this review, and that is the one defined in the
Image Quality Circle. Here we will focus our attention on
the details of connecting the "nesses" to the overall quality
judgement.

To compound the three-M confusion, two additional terms
have been commonly used in the description of image
quality measures: objective image quality and subjective
image quality. Objective image quality measures are usually
physical measures, via an instrument, of some image
characteristic that is related to the overall quality. In the IQC
context, these are termed Physical Image Parameters.

Subjective image quality uses a human being as the
measuring instrument. Subjective image quality is often
viewed as inferior measurement method compared to
objective image quality methods. From a precision or
accuracy perspective this may or may not be true, but it
misses the fundamental point that humans are the
"customer" for images and, by some definition at least, their
view of image quality is the correct one.

THE TWO VIEWS OF IMAGE QUALITY

There are two dissimilar views of image quality. These
two views are predicated on the existence, or convenient
availability, of some "original image" or a clearly defined
physical limit. One can argue that these two views are
fundamentally different. In one instance, the quality of the
original image is already built in, and the emphasis is on
what degrades or impairs the image quality. The alternative
view emphasizes image quality directly, not the degradation
or impairment of quality.

For example, the view of, television, image coding
compression, and processing, is that there is an "ideal", or a
reference image. And in optics there is a physical limit to the
quality of an image, diffraction.

The alternative view comes from photography, and digital
imaging systems. In this view, not always formally stated,
there is no ideal or reference image, except perhaps that in
the observers mind. One consequence is that image quality is
not bounded, it is open-ended.
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These two differing historical views have resulted in two
differing approaches to measuring image quality. Television,
a standardized system with physical bounds, possesses this
concept of an ideal image. It is simply the image quality that
is delivered by the system when it is "up to spec". The
imaging system performing to specification has a physically
describable quality boundary, with deviations measured in
terms of impairments. Today we find the identical concept in
image quality as applied to image coding, compression, and
processing.

A reference, or standard, in optics had its beginnings
when astronomer George B. Airy gave the formulation for
the diffraction pattern of a clear circular aperture in 1834;
the "Airy disk". This physically imposed limit became the
measure of the ultimate image quality. Optical Image
Quality deviations were first proposed in 1902 when K.
Strehl defined the first "image quality measure", what is now
known as the Strehl intensity ratio(2). This led to other
optical image quality measures such as, "image fidelity", a
mean-squared-error criterion between the reference and the
reproduced image, the "relative structural content", and the
"correlation quality"(2). Most optical and digital imaging and
coding quality related measures in use today are related to
these measures(3).

Photography, not having a known physical image
reference, viewed the problem of image quality in terms of
selection of the technology variables to achieve some image
quality level. Early photographic technologists recognized
the limiting factor of the camera lens, but the image quality
capability of the lens was not of prime concern in the
development of photographic materials. In fact, no
satisfactory way of including the contribution of the lens'
imaging characteristics to image quality was available until
after World War II. The application of linear systems theory
to photography enabled the analysis and integration of
lenses and photographic emulsions to optimize system image
quality.

IMAGE QUALITY MODEL THEORY

Psychological Underpinnings
According to the framework of the Image Quality Circle,

the purpose of an Image Quality Model is to predict the
image quality judgment from the value of the nesses in the
image. At a very basic level, this is no different from what
one does every day. We take in "information" from the
world around us via our senses and make decisions based on
that information. This is an active research topic in
psychology and psychophysics and is termed information
integration(4,5) or multidimensional psychophysics(6).

The multidimensional aspect of image quality is, in our
context, the nesses or dimensions that drive the image
quality judgement. In the psychology literature the Image
Quality Model is termed, variously, composition rule(6),

combination rule(5), integration model(4) for
multidimensional stimuli. Some authors have identified two
different types of combination rules(5). They distinguish
between the stimulus rule and the perceptual rule. The
Image Quality Model, which is a combination of nesses,
constitutes a perceptual model (rule). More traditional
model building attempts using Physical Image Parameters to
predict image quality are categorized as a stimulus model
(rule).

Attributes of image quality, the nesses, are either integral
or separable. Integral dimensions, or nesses, occur when two
dimensions together are perceived as new dimension or
percept(5). Separable dimensions are perceived the same
when in combination with other dimensions. Image quality,
per se, is probably an integral dimension, like color.
However, the nesses used in successful Image Quality
Models are more than likely separable.

There is little in the psychological literature to choose
among for providing a theoretical substrate from which to
formalize an approach to Image Quality Models. The most
useful approaches have been developed by the imaging
community itself.

Getting the Image Quality Numbers - Psychometric
Scaling

The whole of Image Quality Models revolves around
numbers representing human judgements of image quality
and the nesses. Collecting appropriate human judgements
falls into the province of psychometric ("mind measuring")
scaling(7).

Although psychometric scaling has a long history in the
photographic industry, it is not widely practiced in other
areas of imaging. This is unfortunate because appropriate
application of psychometric scaling principles is key to
precise measurement of the nesses and image quality; the
building blocks of Image Quality Models. Some scaling
issues will be address later.

IQ Model Formalism
Many Image Quality Models for imaging has been

developed using linear and polynomial regression models on
linear or logarithmically transformed variables. The
independent variables used in these models have often been
the Physical Image Parameters. These have been reported to
be practically useful to various degrees(8,9,10,11,12). These
models are typically not impairment models.

In the television, digital image compression, and encoding
arena a widely used method is the impairment method
proposed and developed by Allnatt(13) and colleagues. This
is an impairment model and is embodied in an ITU
Recommendation BT.500(14). This model starts with the
reference image and rates the factors that impair the image.
These impairments are additive (subtractive) in their effect
on overall picture quality(15).
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A variation on the impairment theme, developed by
Miyahara, Kotani and colleagues(16,17), uses distortion
factors and principle component and multiple regression
analysis to construct a Picture Quality Scale. The distortion
factors, that include characteristics of the Human Visual
System, are developed from the difference image
representing before and after encoding.

By far the most successful Image Quality Model
formalism in photography, printing, and CRT display is the
Minkowski and related metrics. The use of Minkowski
metrics has its roots in multidimensional scaling(18) where it
is used as a distance measure.  The first successful
application of the Minkowski metrics to Image Quality
Model building, as far as I can determine, was by Bartleson
in 1982(19). There were two keys to this success. The first
was a break with tradition by using nesses as the
independent dimensions (variables) of quality. The second
was the choice of separable nesses (dimensions); sharpness
and noislessness (10-graininess). In Bartleson's Image
Quality Model the Minkowski metric integrated both the
combination rule and metric properties into a perceptual
model (rule).

A distance interpretation of the Minkowski metric
formalism is not the only possibility. It can be generalized
and cast as a generalized weighted mean hypothesis
(GWMH)(20), suggesting that observers take some form of
average when evaluating image quality.

The application of this mathematical formalism has been
successful in both the image impairment and quality
approachs. Some nesses incorporated into successful image
quality models include graininess and sharpness(19,21), defect-
ness, sharpness, and color accuracy-ness(20), bluriness and
raster-ripple in image coding impairment(22,23,24).

There are at least two reasons for the success of the
Minkowski and the GWMH formalism. Two nesses of
fundamental importance in photographic, as well as other
imaging technologies, is graininess (uniformityness) and
sharpness. It appears that these two nesses or dimensions are
separable and are represented in "ness space" as two
orthogonal axes. Separability of nesses increased the
prospect of "finding" a useful model with this formalism.
This was serendipitous.

The second reason is the flexibility of the Minkowski and
GWMH formalism. The GWMH form tends to mimic the
tendency of observers to "peak pick"; i.e. they focus on the
worse ness to make their IQ judgment. The magnitude of the
exponent captures this.

In the psychology literature a lot of effort has been
focused on two different Minkowski metrics, the "city block
metric", or linear model, and the Euclidean metric. They
only difference between these two, from the mathematical
formalism view, is the value of the exponent; one for the city
block and two for the Euclidean. In fact one can make an
argument that if the nesses are treated as random variables,
then small variation in these variables will yield a linear

model(20). These mathematical forms are quite flexible,
providing the nesses (dimensions) are separable or
independent, the concept of a distance is appropriate, and,
observers use the same combination rule.

IMAGE QUALITY MODEL ISSUES

Psychometric Scaling
Scaling is key to determining the numerical values of the

independent and dependent variables for Image Quality
Model building. There are three main issues revolving
around scaling. Of major importance is the generation of
psychometric scales that have at least an interval, or
distance, property. For instance, categorizing responses into
N categories and assigning numbers 1 to N to the categories
does not guarantee an interval scale.

The second issue is the question posed to the observers. It
is common to ask observers for preference of images when
the real question is "the quality of the image samples". The
unstated assumption is that preference equals quality, which
may not be true.

Sample set selection is the third issue. Asking observers to
judge quality using a sample set having only one ness
varying will usually result in the conclusion that one ness
equals quality. And this is just the tip of this iceberg.

Nesses
The more successful Image Quality Models are ness-

based (perceptual) models using the Minkowski or GWMH
formalism. (This is the primary reason for the present form
of the Image Quality Circle.) In general, it is difficult to
identify nesses apriori. Exceptions are the well-known
nesses originating from photography: uniformityness
(graininess), sharpness, lightness (tone) reproduction-ness,
and hue-chroma reproduction-ness. Nesses associated with
image coding, compression, and processing are not well
understood and more work is needed.

Nesses need to vary for observers to judge quality.
Attributes that are visible and detract from the overall image
quality, but do not vary, are irrelevant attributes, relative to
the IQ judgment.

To date the available data suggest that Image Quality
Models built on nesses, that is perceptual models, yield
lower variance in the prediction of IQ than models based on
Physical Image Parameters. Of course, if the relevant nesses
for model building are not known then the only alternative
may be the stimulus or PIP form of the IQ models.

The Universal Image Quality Model
The Universal Image Quality Model has been the Holy

Grail of image quality modeling. At present, it is unlikely
that the UIQM will ever be achieved. In practical
applications of Image Quality Models, the set of relevant
nesses is limited to those of interest, and those exhibited in
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the sample set. This ness set is by no means universal,
though a few elements may be common to several imaging
technologies. Sharpness is one ness that appears across
many facets of imaging.

One could consider a UIQM that has N nesses that
encompass some large number of imaging technologies. If N
is greater than about five, it is unlikely that observers can
attend, simultaneously, to all the N dimensions. Irrelevant
nesses are neither part of the judgement process nor the
model. This admits the possibility of an array of Image
Quality Models that are composed of different sets of
nesses.

SUMMARY

A review of Image Quality Model building reveals that
this field is still in its infancy. There is much work to be
done!
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